Evolving Hyperparameters of Support Vector Machines Based on Multi-Scale RBF Kernels
نویسندگان
چکیده
Kernel functions are used in support vector machines (SVMs) to compute dot product in a higher dimensional space. The performance of classification depends on the chosen kernel. Each kernel function is suitable for some tasks. In order to obtain a more flexible kernel function, a family of RBF kernels is proposed. Multi-scale RBF kernels are combined by including weights. These kernels allow better discrimination in the feature space, and are proved to be the Mercer’s kernels. Then, the evolutionary strategies are applied for adjusting the hyperparameters of SVM. Subsets cross validation is used to be the objective function in evolutionary process. The experimental results show that the accuracy of the proposed method is better than the ordinary approach.
منابع مشابه
Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملAn Experimental Multi-Objective Study of the SVM Model Selection problem
Introduction Methods & Materials Results Conclusions Support Vector Machines have been proven to be very effective methods for classification and regression. However, in order to obtain good generalization errors the user needs to choose appropriate values for the involved parameters of the model. SVM model selection problem Tuning the hyperparameters : kernel parameters (γ, degree, coef, etc) ...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کامل